Chaff from the Wheat: Characterizing and Determining Valid Bug Reports

Abstract

In this study, we propose an approach which can determine whether a newly submitted bug report is valid. Our approach first extracts 33 features from bug reports. The extracted features are grouped along 5 dimensions, i.e., reporter experience, collaboration network, completeness, readability and text. Based on these features, we use a random forest classifier to identify valid bug reports. To evaluate the effectiveness of our approach, we experiment on large-scale datasets containing a total of 560,697 bug reports from five open source projects (i.e., Eclipse, Netbeans, Mozilla, Firefox and Thunderbird). On average, across the five datasets, our approach achieves an F1-score for valid bug reports and F1-score for invalid ones of 0.74 and 0.67, respectively. Moreover, our approach achieves an average AUC of 0.81. In terms of AUC and F1-scores for valid and invalid bug reports, our approach statistically significantly outperforms two baselines using features that are proposed by Zanetti et al. [99]. We also study the most important features that distinguish valid bug reports from invalid ones. We find that the textual features of a bug report and reporter’s experience are the most important factors to distinguish valid bug reports from invalid ones.

Publication
IEEE Transactions on Software Engineering. CCF A